Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mehmet Akkurt, ${ }^{\text {a* }}$ Sema Öztürk

 Yıldırım, ${ }^{\text {a }}$ Hasan Küçükbay, ${ }^{\text {b }}$ Nihat Sireci ${ }^{\text {b }}$ and Orhan Büyükgüngör ${ }^{\mathbf{c}}$${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Arts and Sciences, Ínönü University, 44280 Malatya, Turkey, and ${ }^{\text {c }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey

Correspondence e-mail: akkurt@erciyes.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.038$
$w R$ factor $=0.093$
Data-to-parameter ratio $=16.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3,3'-Bis(3-methylbut-2-enyl)-1,1'-propylenedibenzimidazolium dibromide monohydrate

The title compound, $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{4}{ }^{2+} \cdot 2 \mathrm{Br}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, was synthesized from $1,1^{\prime}$-propylendibenzimidazole and 1-bromo-3-methylbut-2-ene in dimethylformamide solution. The compound crystallizes with one water molecule and two Br^{-}ions in the asymmetric unit. The crystal structure is stabilized by interand intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogenbonding interactions.

Comment

Dibenzimidazole compounds display a wide range of pharmacological activities, such as antitumour, diuretic, fungicidal, bactericidal, antihelmintic, anti-allergic, vasodilator, antihistaminic, anti-ulcer and local analgesic properties (Del Poeta et al., 1998; Soderlind et al., 1999; Singh \& Lown, 2000; Küçükbay et al., 2003, 2004). Therefore, it seemed of interest to synthesize new bisbenzimidazole compounds. The aim of the present study was to synthesize and elucidate the crystal structure of the new bisbenzimidazole compound, (I), and compare the results with those obtained from our previous studies of related bisbenzimidazole derivatives (Öztürk et al., 2003; Akkurt et al., 2003, 2006a,b).

(I)

The molecular structure of (I) is shown in Fig. 1, with the atom-numbering scheme. The arrangement of the molecules in the unit cell is shown in Fig. 2. The benzimidazole ring systems $A(\mathrm{~N} 1 / \mathrm{N} 2 / \mathrm{C} 1-\mathrm{C} 7)$ and $B(\mathrm{~N} 3 / \mathrm{N} 4 / \mathrm{C} 16-\mathrm{C} 22)$ are essentially planar, with maximum deviations of 0.014 (3) A for atom C6 in A, and 0.019 (2) \AA for atom N3 in B. The dihedral angle between the least-squares planes of the A and B benzimidazole ring systems is $27.33(11)^{\circ}$. The values of the observed bond lengths and angles in (I) have normal values

Received 12 July 2006 Accepted 21 July 2006

Figure 1
A view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
A view of the packing and hydrogen bonding (dashed lines) in (I), along the b axis. H atoms not involved in the hydrogen bonding have been omitted for clarity.
and they are in good agreement with those observed in the literature (Allen et al., 1987; Akkurt et al., 2005; Karaca et al., 2005; Pınar et al., 2006).

The crystal structure of (I) is stabilized by inter- and intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen-bonding interactions. The details of these interactions can be seen in Table 1.

Experimental

1,1'-Propylendibenzimidazole was synthesized according to the literature method of Küçükbay et al. (1995). A mixture of 1,1'propylendibenzimidazole ($1.0 \mathrm{~g}, 3.62 \mathrm{mmol}$) and 1-bromo-3-methyl-2-butene ($1.2 \mathrm{~g}, 7.73 \mathrm{mmol}$) in dimethylformamide (DMF; 5 ml) was heated under reflux for 5 h . The mixture was then cooled and the volatiles were removed under vacuum. The residue was crystallized from a DMF-EtOH (1:3) mixture (yield $1.83 \mathrm{~g}, 85 \%$; m.p. 477$478 \mathrm{~K})$. Analysis calculated for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{Br}_{2} \mathrm{O}: \mathrm{C} 54.73$, $\mathrm{H} 6.08, \mathrm{~N}$ 9.46\%; found: C 54.84, H 6.09, N 9.60\%.

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{4}{ }^{2+} \cdot 2 \mathrm{Br}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=592.40$

$$
Z=2
$$

Triclinic, $P \overline{1}$
$a=8.7777$ (4) £
$b=12.0851$ (7) \AA
$c=14.4078(7) \AA$
$\alpha=106.966(4)^{\circ}$
$\beta=96.868(4)^{\circ}$
$\gamma=104.747(4)^{\circ}$

$$
V=1382.30(13) \AA^{3}
$$

$D_{x}=1.423 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=2.96 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prism, colourless
$0.62 \times 0.49 \times 0.32 \mathrm{~mm}$

Data collection

Stoe IPDS II diffractometer ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.261, T_{\text {max }}=0.451$
25534 measured reflections 5267 independent reflections 4128 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.063$
$\theta_{\text {max }}=26.0^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.093$
$S=1.04$
5267 reflections
317 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0473 P)^{2}\right.} \\
&+0.3788 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.54 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.33 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{Br} 1$	$0.79(6)$	$2.62(6)$	$3.313(4)$	$146(5)$
$\mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{Br}{ }^{\mathrm{i}}$	$0.82(5)$	$2.55(5)$	$3.360(3)$	$169(5)$
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Br} 1$	0.93	2.80	$3.586(3)$	142
$\mathrm{C} 8-\mathrm{H} 8 B \cdots \mathrm{Br} 2^{\mathrm{ii}}$	0.97	2.89	$3.819(3)$	160
$\mathrm{C} 13-\mathrm{H} 13 B \cdots \mathrm{Br} 2$	0.97	2.91	$3.832(3)$	159
$\mathrm{C} 20-\mathrm{H} 20 \cdots \mathrm{Br} 2^{\mathrm{iii}}$	0.93	2.91	$3.812(3)$	163
$\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{Br} 1$	0.93	2.62	$3.523(3)$	164
Symmetry codes: (i) $x-1, y, z ;$ (ii) $-x+1,-y+1,-z ;$ (iii) $-x+2,-y+2,-z+1$				

Carbon-bound H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}$ $=0.93-0.97 \AA$, and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}\left(\mathrm{C}_{\text {aromatic }}\right.$ or $\left.\mathrm{C}_{\text {methylene }}\right)$ or $1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$. The H atoms of the water molecule were located in a difference Fourier map and refined isotropically.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant F. 279 of the University Research Fund). HK and NŞ also thank Ínönü University Research Fund (grant Nos. BAPB-2005/36 and 2005/37) for financial support of this study.

References

Akkurt, M., Karaca, S., Küçükbay, H., Orhan, E. \& Büyükgüngör, O. (2005). Acta Cryst. E61, o2452-o2454.
Akkurt, M., Öztürk, S., Küçükbay, H., Okuyucu, N. \& Fun, H.-K. (2003). Acta Cryst. E59, o786-o788.
Akkurt, M., Yıldırım, S. Ö., Küçükbay, H., Şireci, N. \& Büyükgüngör, O. (2006a). Acta Cryst. E62, o3184-o3186.
Akkurt, M., Yıldırım, S. O., Küçükbay, H., Şireci, N. \& Fun, H.-K. (2006b). Acta Cryst. E62, o922-o924.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Del Poeta, M., Schell, W. A., Dykstra, C. C., Jones, S., Tidwell, R. R., Czarny, A., Bajic, M., Bajic, M., Kumar, A., Boykin, D. \& Perfect, J. R. (1998). Antimicrob. Agents Chemother. 42, 2495-2502.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Karaca, S., Akkurt, M., Yılmaz, U., Küçükbay, H. \& Büyükgüngör, O. (2005). Acta Cryst. E61, o2128-o2130.
Küçükbay, H., Çetinkaya, E. \& Durmaz, R. (1995). Arzneium.-Forsch./Drug. Res. 45, 1331-1334.
Küçükbay, H., Durmaz, R., Okuyucu, N. \& Günal, S. (2003). Folia Micobiol. (Praha), 48, 679-681.
Küçükbay, H., Durmaz, R., Okuyucu, N., Günal, S. \& Kazaz, C. (2004). Arzneim.- Forsch./Drug. Res. 54, 64-68.
Öztürk, S., Akkurt, M., Küçükbay, H., Okuyucu, N. \& Fun, H.-K. (2003). Acta Cryst. E59, o1014-o1016.
Pınar, Ş., Akkurt, M., Küçükbay, H., Şireci, N. \& Büyükgüngör, O. (2006). Acta Cryst. E62, o2223-o2225.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Singh, A. K. \& Lown, J. W. (2000). Anti-Cancer Drug Des. 15, 265-275.
Soderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N. R., Miller, G. G. \& Lown, J. W. (1999). Anti-Cancer Drug Des. 14, 19-36.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

